

Risk Assessment Veterinary Medicinal Products

Göttingen, February 26, 2018

Hans van Hattum, DVM

Veterinary Medicinal Product VMP

Marketing Authorisation

Dossier for application for Marketing Authorisation as VMP

- Part 1: Summary of the Dossier
- Part 2: Pharmaceutical Information
- Part 3: Safety + Residues
- Part 4: Efficacy

Safety

- Animal Safety
- Human Safety
- Environmental Safety

Animal Safety

Toxicity

Tolerance

active ingredient: rat, rabbit, etc

final formulation: target species

- User Safety
- Consumer Safety

Definition of User:

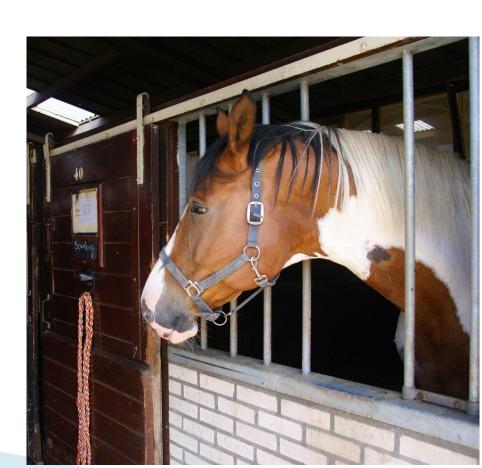
Any person that may come in contact with the VMP:

- before
- during
- after

its application

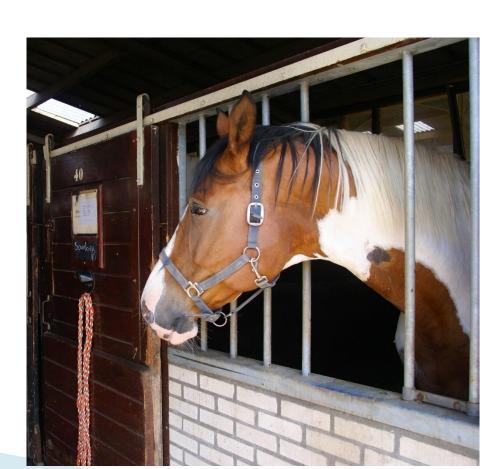
User Safety

User Safety

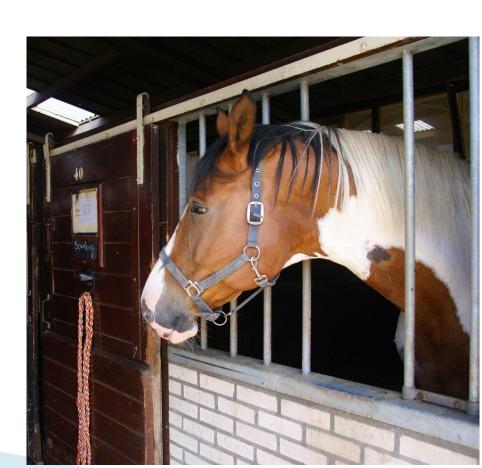


User Safety

- Hazard identification and characterisation
- Exposure
- Risk



User Risk Assessment:


- Hazard identification and characterisation
 - Toxicity active(s)

NO(A)EL

- Hazard identification and characterisation
- Exposure
- Risk

- Exposure
 - Presentations, use, physico-chemical properties
 - Tasks and situations that lead to exposure
 - Exposure scenarios

- Exposure: Tasks and situations
 - Objection:
 - Storage
 - Opening Package, taking out tablet
 - Mixing
 - Diluting
 - Filling syringe

- Exposure: Tasks and situations
 - During application:
 - Administration
 - Holding/restraining animal for treatment

- Exposure: Tasks and situations
 - After application:
 - Cleaning equipment
 - Disposal packaging
 - Disposal surplus product
 - Handling treated animals
 - Stroking the coat of treated animals

- Exposure
 - Presentations, use, physico-chemical properties
 - Tasks and situations that lead to exposure
 - Exposure scenarios

- Hazard identification and characterisation
- Exposure
- Risk

- Risk
 - Risk characterisation
 - Risk management
 - Risk communication

User Risk Assessment: Topical administration

Product:

Spot-on solution, pipette; Cat

Contact with the product

Exposure, worst-case:

Pre-application: accidental oral, child (12.5 kg)

User Risk Assessment: Topical administration

Product:

Spot-on solution, pipette; Cat

Contact with the product

Exposure, worst-case:

Direct oral exposure: 10 % of contents

In-direct oral exposure: $10\% \times 10\% = 1\%$ of contents

$$Exposure = \frac{Contents \ x \ Fraction}{Body \ weight}$$

User Risk Assessment: Topical administration

Product:

Spot-on solution, pipette; Cat

Contact with the treated animal

Acute Dermal Exposure

User Risk Assessment: <u>Acute Dermal Exposure</u>

DE = Dermal Exposure (mg/kg bw/day)

TR = Transferable Residue: concentration of the active per surface area of the cat that may transfer to the child (mg/cm²)

 $SA_{contact}$ = surface area child in contact with the animal (= 1790 cm²)

$$DE = \frac{TR \times SA_{CONTACT}}{BW}$$

User Risk Assessment: Acute Dermal Exposure

TR =Transferable Residue (mg/cm²)

AR = Application Rate: amount of active applied to the animal (mg)

F_{AR} = Fraction of the Application Rate (= 15%)

 SA_{ANIMAL} = Surface Area of the animal (cat 2500 cm²)

$$TR = \frac{AR \times F_{AR}}{SA_{ANIMAL}}$$

Consumer Safety

Residues -> Withdrawal Period

Withdrawal period:

Period after last administration during which consumption of meat, eggs and milk is not safe, because of residues of the veterinary medicinal product

Basis for the establishment of the withdrawal period:

MRL

Maximum Residue Limit

MRL is established by EMA on the basis of MRL-dossier submitted by veterinary pharmaceutical company.

New active? \rightarrow MRL dossier

MRL is established by EMA on the basis of MRL-dossier submitted by veterinary pharmaceutical company.

New active? \rightarrow MRL dossier

No MRL for the active? → No Marketing Authorisation

MRL should be established:

- For each edible tissue
- For each target species

Edible Tissues

Mammals	Poultry	Fish	Bees
Muscle	Muscle	Muscle+Skin	Honey
Liver	Liver		
Kidney	Kidney		
Fat Skin+Fat (pig)	Skin+Fat		
Milk	Eggs		

Basis to determine MRL:

- Acceptable Daily Intake (ADI)
- Body Weight Consumer
- Consumption Figures
- Marker Residues
- Distribution in Edible Tissues

Basis to determine MRL:

- Acceptable Daily Intake (ADI)
- Body Weight Consumer
- Consumption Figures
- Marker Residues
- Distribution in Edible Tissues

MRL Dossier

Toxicity studies \rightarrow NO(A)EL \rightarrow ADI

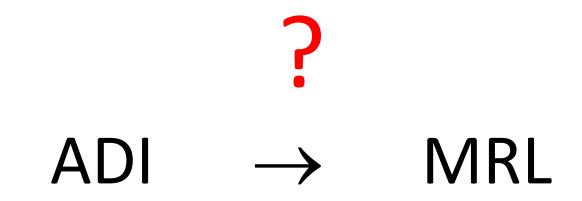
Acceptable daily intake (ADI): the estimate of the residue (µg/kg or mg/kg of bodyweight), that can be ingested daily over a lifetime without any appreciable health risk.

MRL Dossier: Toxicity studies

- Repeated dose 90-day oral studies: rat, dog
- Repeated dose (chronic) toxicity studies: rat
- Two-generation reproduction study: rat
- Development toxicity: rat, rabbit
- Battery of mutagenicity
 Additional studies:
- Carcinogenicity studies
- Other tests: Immunotoxicity, neurotoxicity, etc
 In compliance with GLP (Good Laboratory Practice)

MRL Dossier: Toxicity studies \rightarrow NO(A)EL

NO(A)EL Animal toxicity data
ADI Human beings


Determination ADI:

$$ADI = \frac{NO(A)EL}{UF}$$

UF = Uncertainty (Safety) Factor

MRL Dossier, Residue File

MRL Dossier, Residue File

Maximum acceptable residue daily intake to be ingested by the consumer:

Body weight 60 kg

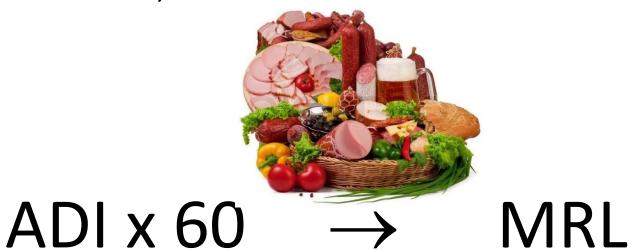
Maximum intake: $ADI \times 60$

MRL Dossier, Residue File

ADI x 60

MRL

MRL Dossier, Residue File


ADI x 60

 \rightarrow

MRL

MRL Dossier, Residue File

MRL Dossier

Food basket Daily Consumption

Mammals		Poultry		Fish	
	(kg)		(kg)		(kg)
Muscle	0.300	Muscle	0.300	Muscle+skin	0.300
(Skin+) Fat	0.050	Skin+ Fat	0.090		
Liver	0.100	Liver	0.100		
Kidney	0.050	Kidney	0.010		

PLUS

	Milk	1.500	Eggs	0.100	Honey	0.020
--	------	-------	------	-------	-------	-------

MRL Dossier

Basis to determine MRL:

- Acceptable Daily Intake (ADI)
- Body Weight Consumer
- Consumption Figures
- Distribution in Edible Tissues

MRL Dossier

Distribution in edible tissues

MRLs should be based on the tissue residues distribution pattern of the active substance

MRL Dossier

Distribution in edible tissues

MRLs should be based on the tissue residues distribution pattern of the active substance

Determination of distribution:

Tissue residue study

Tissue Residue Study

For example:

Target Species: Cattle

ADI: $1.50 \mu g/kg$

Body Weight 60 kg \rightarrow Max Daily Intake: 90 μ g

Tissue Residue Study

<u>Design</u>

24 animals: Cattle

6 groups, 4 animals each

Administration active

Slaughtering: 3, 6, 9, 12, 15, 18 days post dosing

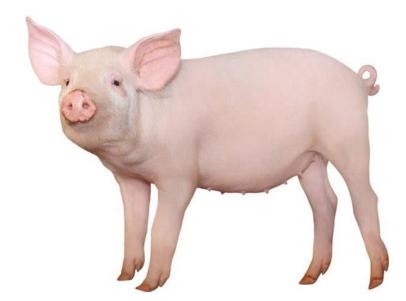
Analyses: concentration in liver, kidney, fat,

muscle

		Residue	s (µg/k		
Days post dosing	Liver	Kidney	Fat	Muscle	
3	799	1022	213	75.1	
6	567	665	150	57.3	
9	335	307	86.8	39.6	
12	221	197	59.3	29.5	
15	106	86.8	31.9	19.4	
18	76.9	65.0	21.7	13.2	

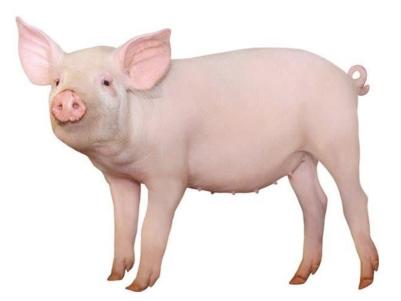
	ŀ	Residue	s (µg/k		
Days post dosing	Liver	Kidney	Fat	Muscle	
3	799	1022	213	75.1	
6	567	665	150	57.3	
9	335	307	86.8	39.6	
12	221	197	59.3	29.5	
15	106	86.8	31.9	19.4	
18	76.9	65.0	21.7	13.2	
Food basket	0.100	0.050	0.050	0.300	kg

	F	Residue	s (µg/k		
Days post dosing	Liver	Kidney	Fat	Muscle	Total ingested (μg)
3	799	1022	213	75.1	164
6	567	665	150	57.3	115
9	335	307	86.8	39.6	65.1
12	221	197	59.3	29.5	43.7
15	106	86.8	31.9	19.4	22.4
18	76.9	65.0	21.7	13.2	16.0
Food basket	0.100	0.050	0.050	0.300	kg

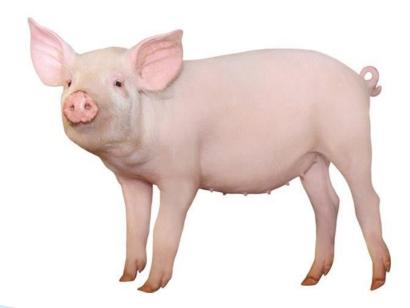

	F	Residue	s (µg/k		
Days post dosing	Liver	Kidney	Fat	Muscle	Total ingested (μg)
3	799	1022	213	75.1	164
6	567	665	150	57.3	115
9	335	307	86.8	39.6	65.1
12	221	197	59.3	29.5	43.7
15	106	86.8	31.9	19.4	22.4
18	76.9	65.0	21.7	13.2	16.0
Food basket	0.100	0.050	0.050	0.300	kg

	F	Residue	s (µg/k		
Days post dosing	Liver	Kidney	Fat	Muscle	Total ingested (μg)
9	335	307	86.8	39.6	65.1
Distribution	8	8	2	1	Max Daily Intake
MRL possible	240	240	60	30	48.0
MRL possible	320	320	80	40	64.0

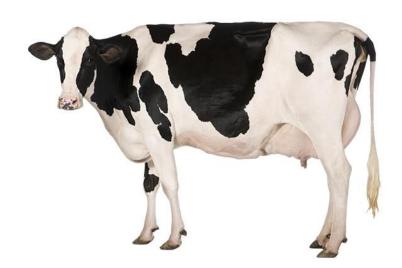
MRL → Withdrawal period



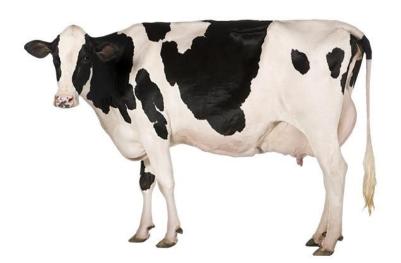
Withdrawal period:


Withdrawal period depends on the individual formulation

Marketing Authorisation Dossier!

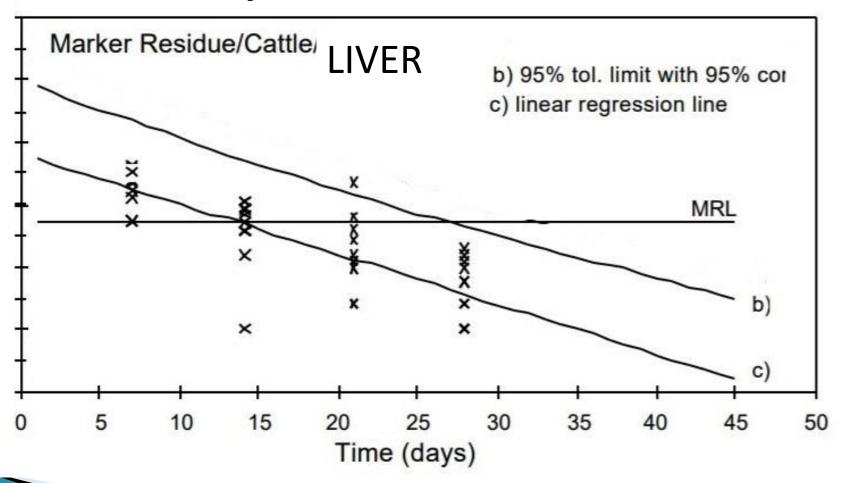


Withdrawal period:



Withdrawal period:

- Final Formulation!!!
- Target Species
- Dosing according to Marketing Authorisation
- Good Laboratory Practice



Tissue Residue Study

Design, for example:

- Cattle
- 4 groups, 6 animals each
- Slaughtering groups at 7, 14, 21, 28 days post dosing
- Analyses liver, kidney, muscle, fat

Withdrawal Periods

Liver 28 days

Kidney 10 days

Muscle 14 days

Fat 10 days

Overall Withdrawal Period: 28 days

Safety

Product on the market:

Pharmacovigilance

