baua:

Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

und Arbeitsmedizin

Gemeinsamer Workshop des BfR und des GT Arbeitskreises Regulatorische Toxikologie

"Expositions-/Risikoabschätzungen im Bereich menschliche Gesundheit"

Dr. Susanne Bredendiek-Kämper, BAuA, 4.1a "REACh und Expositionsforschung"

Inhalt

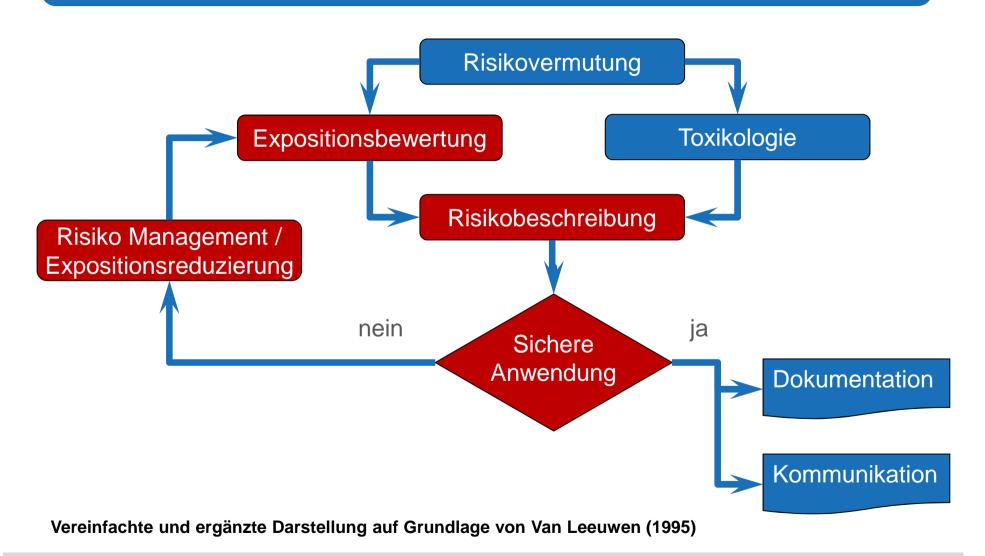
Teil 1:
 Einführung
 Grundlagen
 Einfache Berechnungen
 EMKG, Beispiel
 ECETOC TRA, Beispiel

Pause

> Teil 2: Beispiel, Übungen

Fokus: Arbeitnehmer

Ziel: Verständnis für die fachlichen Grundlagen, nicht für die IT-Anwendung der Tools



Exposition unter REACh

unerwünschte Exposition Arbeitsplatzchemikalien Verbraucherchemikalien Emissionen in die Umwelt, man via environment

Allgemeiner Risiko-Management-Prozess

baua:

Registrierung - Expositionsbeurteilung

Stoffe ≥ 10 t/a Registrierungen Stoffsicherheitsbericht Chemical Safety Report (CSR)

Für Mensch & Umwelt für gesamten Lebenszyklus des Stoffes:

- Expositionsbeurteilung
- Risikobeschreibung

Kommunikation via Sicherheitsdatenblatt

Fazit: Stoff ist gefährlich

Ziel: Definition von Verwendungsbedingungen und Risikominderungsmaßnahmen, unter denen die Risiken kontrolliert werden können!

https://echa.europa.eu/de/support/registration/what-information-you-need-to-submit

- 1. Sammeln & Gewinnen von Informationen über inhärente Eigenschaften
- 2. Ermittlung schädlicher Wirkungen auf menschliche Gesundheit (C&L, ggf. firmenintern, Konzentrationsgrenzen)
- 3. Ermittlung schädlicher Wirkungen durch pc Eigenschaften
- 4. Ermittlung schädlicher Wirkungen auf Umwelt
- 5. Ermittlung persistenter, bioakkumulierbarer und toxischer (PBT) Eigenschaften sowie sehr persistenter und sehr

bioakkumulierbarer (vPvB) Eigenschaften a U a

Inhalte von Expositionsszenarien (ES)

Ein Expositionsszenario beschreibt die Bedingungen für eine bestimmte Verwendung, unter denen der Stoff sicher gehandhabt werden kann, d.h. die Risiken sind angemessen kontrolliert. Es umfasst:

- Prozessbeschreibung (inkl. verwendete Mengen)
- Operationelle Bedingungen (inkl. Frequenz und Dauer der spezifischen T\u00e4tigkeiten)
- Risikomanagementmaßnahmen (Prozess- und Emissionskontrolle, Persönlichen Schutzausrüstung, guter Hygienestandard, etc.)
- Obligatorisch für "Down stream uses" (Verwendungen am Ende der Lieferkette, z.B. in Produkten, die im gewerblichen Bereich benutzt werden)

REACH-Verordnung (EU) Nr. 1907/2006

Artikel 3, Nr. 37:

Expositionsszenarium:

Zusammenstellung von Bedingungen einschließlich der Verwendungsbedingungen und Risikomanagementmaßnahmen, mit denen dargestellt wird, wie der Stoff hergestellt oder während seines Lebenszyklus verwendet wird und wie der Hersteller oder Importeur die Exposition von Mensch und Umwelt beherrscht oder den nachgeschalteten Anwendern zu beherrschen empfiehlt. Diese Expositionsszenarien können ein spezifisches Verfahren oder eine spezifische Verwendung oder gegebenenfalls verschiedene Verfahren oder Verwendungen abdecken;

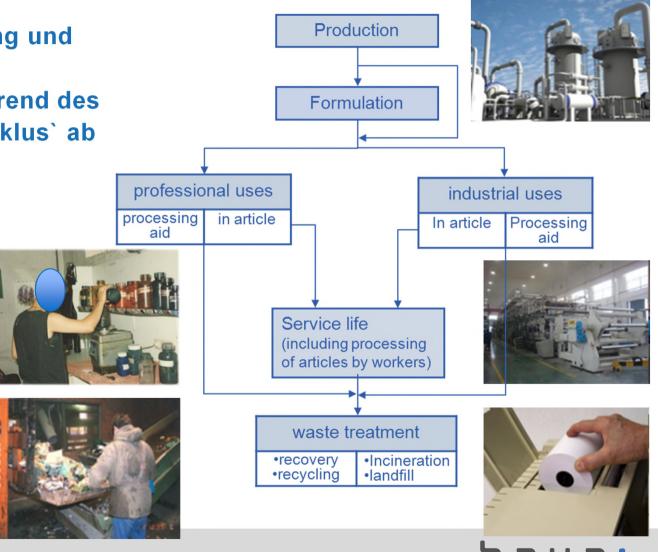
Anhang I von REACH

ECHA Guidance Dokumente (D, R11.2, R12-18),

REACH-Info 11

Safe use, aber mit realisierbaren Bedingungen,

Möglicher Lebenszyklus eines Stoffes


Deckt die Herstellung und die vorgesehenen Verwendungen während des gesamten Lebenszyklus` ab und beinhaltet:

Production

Use

Service Life

Waste disposal/recycling

Verwendungsdeskriptoren

- Die Verfahrenskategorie (PROC) beschreibt die Anwendungstechniken oder Verfahrensarten, definiert aus Sicht des Arbeitsschutzes.
- Die Erzeugniskategorie (AC) beschreibt die Art des Erzeugnisses,
 zu dem ein Stoff schließlich verarbeitet wird. Dies schließt auch
 Gemische in getrockneter oder gehärteter Form (z. B. getrocknete
 Druckfarbe in Zeitungen; getrocknete Beschichtungen auf
 verschiedenen Oberflächen) ein.
- Die *Produktkategorie* (PC) beschreibt, in welchen Arten von chemischen Produkten (= Stoffe als solche oder in Gemischen) ein Stoff letztendlich enthalten ist, wenn er zur Endverwendung (durch Industrie, sonstige Gewerbe oder Verbraucher) geliefert wird.

Prozesskategorien (PROC)

Kürzel	Prozesskategorie	Beschreibung	
PROC 1	Verwendung im geschlossenen System	Verwendung von Stoffen in geschlossenen Systemen, bei denen nur ein geringes Potential für Expositionen besteht, Probenahme wird z.B. in geschlossenen Apparaturen durchgeführt	
PROC 27b	Herstellung von Metallpulvern	Herstellung von Metallpulvern durch metallurgische Feuchtverfahren	

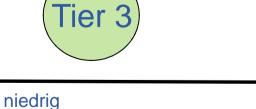
Beispiele für Prozesskategorien

Kürzel	Prozesskategorie	Beschreibung
PROC 5	Mischen oder Vermengen in Chargenverfahren zur Formulierung von Gemischen und Erzeugnissen (mehrfacher und/oder erheblicher Kontakt)	Herstellung oder Formulierung von chemischen Produkten oder Erzeugnissen mit Technologien zum Mischen und Vermengen von festen oder flüssigen Materialien, bei der das Verfahren mehrere Schritte umfasst und in jedem Schritt die Möglichkeit eines erheblichen Kontakts besteht.

Prozesskategorien

Beispiele für Prozesskategorien

Kürzel	Prozesskategorie	Beschreibung
PROC 8a	Transfer des Stoffes oder des Gemisches Beschickung/ Entleerung) aus/in Gefäße/ große Behälter in nicht speziell für nur ein Produkt vorgesehenen Anlagen	Probenahme, Laden, Füllen, Transfer, Abladen, Absacken in nicht speziell für nur ein Produkt vorgesehenen Anlagen. Exposition durch Staub, Dampf, Aerosole oder Überlauf sowie beim Reinigen von Ausrüstungen ist zu erwarten.


ES: Beitragende Szenarien

Industrielles Spritzlackieren kann umfassen:

- Anmischen der Farbe, Befüllung der Spritzapparatur
- Manuelles Spritzen mit Lokaler Absaugung und Hautschutz
- Manuelles Spritzen ohne Lokale Absaugung, aber mit Atemschutz und Hautschutz
 Welche PROCs?
- Automatische Spritzapparatur
- Trocknung beschichteter Artikel (geschlossen, automatisch)
- Trocknung beschichteter Artikel (offen, Lüftung)
- Reinigung der Apparatur / der Werkzeuge Hält Arbeitnehmer sich im Trocknungsbereich auf?

Tiered Approach – Grundsätzliches Komplexere Modelle • Spezifischere Eingangsparameter Tier 1 • Erhöhtes Vertrauen der Aussagen (Konfidenz) Realitätsnäher Tier 2 Grobes Screening, Priorisierung Analogieschlüsse Spezifische Messungen • Umfasst viele Anwendungen Konservative Aussage

Unsicherheit

hoch

niedrig

hoch

Konservativität

Aussagekraft von Expositionsdaten

Hohe Aussagekraft

aktuelle Messdaten hoher Qualität

Mittlere Aussagekraft

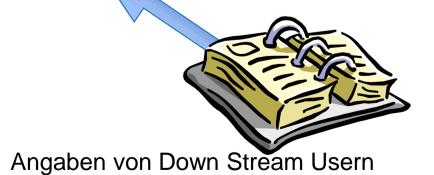
- analoge Messdaten hoher Qualität
- aktuelle Messdaten mittlerer Qualität

Mittlere bis geringe Aussagekraft

- Modelle
- aktuelle Messdaten mäßiger Qualität
- analoge Messdaten mittlerer Qualität

Vertrauen

Mittel der Expositionsbewertung


Datenbanken, Literatur, Analogieschlüsse, Guidance

Feldstudien, Messungen

Expositions- bewertung

Informationsbeschaffung zu down stream uses

- Aus Betrieben (Betriebsbegehungen)
- Branchen- und tätigkeitsspez. Informationen, z.B. Berufsgenossenschaften, Verbände, ...
- Literatur
- Datenbanken
- Down Stream User (Lieferkette)
- TRGS (z.B. Stand der Technik

.

Modelle, Messdaten

Einflussparameter auf die Exposition

- Stoffeigenschaften
- Tätigkeit
- Umgebungsparameter
- persönliches Verhalten
- Schutzmaßnahmen

Messwerte – kontextuale Informationen

Gründe für Arbeitsplatzmessungen

Arbeitsplatzmessungen werden durchgeführt, um

- Expositionen von Arbeitnehmern zu beschreiben und zu quantifizieren
- Expositionen an bestimmten Arbeitsplätzen (Schicht) und/oder
 Tätigkeiten (Kurzzeit) repräsentativ zu bewerten
- die Einhaltung von Arbeitsplatzgrenzwerten zu belegen (AGW, IOELV, BOELV, TLV, MAK, DNEL, ...)
- eine Expositionsquelle zu identifizieren und zu überwachen
- die Wirksamkeit von (technischen) Schutzmaßnahmen zu belegen
- eine solide Basis für Expositionsmodelle zu liefern
- gute Arbeitspraxis / den Stand der Technik zu beschreiben

Anlass der Messungen hat Einfluss auf die Werteverteilung

Anzahl der erforderlichen Messdaten (R.14)

		Risk Characterization Ratio (RCR)			
		RCR: < 1 - 0,5	RCR: < 0,5 - 0,1	RCR: < 0,1	
Variabilität	gering GSD < 2	~ 20 - 30	12 – 20	6 – 12	
und Unsicherheit	mittel GSD 2 – 3,5	~ 30 –50	~ 20 – 30	~ 12 – 20	
in den Messdaten	hoch GSD > 3,5	> 50	~ 30 – 50	~ 20 – 30	

GSD = geometric standard derivation geometrische Standardabweichung

Tools: Expositionsabschätzung am Arbeitsplatz

Modelle: Banding und deterministisch

Tier 1 Tools

- ECETOC TRA (worker module)
- EMKG-ExpoTool
- MEASE

. . .

Tier 2 Tools

- Advanced REACH Tool ART
- SprayExpo
- RISKOFDERM
- dART

Zwischen Tier 1 und Tier 2

Stoffenmanager

!Auch Modellabschätzungen müssen gut dokumentiert sein!

Toxikologie – DNEL-Ableitung

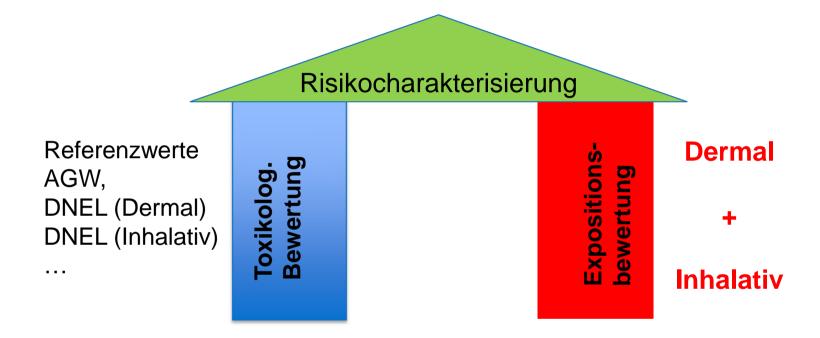
START: Tierexperimentelle Daten

1) Auswahl des Startpunkts

(relevanter Effekt aus relevanter Studie)

2) Anpassung des Startpunkts

(Pfad-zu-Pfad-Umrechnung, tägliche/wöchentliche Expositionsdauer, Atemvolumina, Absorptionsraten)


3) Anwendung der Extrapolationsfaktoren

(Variabilität zwischen Tier und Mensch, Variabilität zwischen Arbeitnehmern, Zeit-Extrapolation, Dosis-Wirkungsbeziehung, Qualität der gesamten Datenbasis)

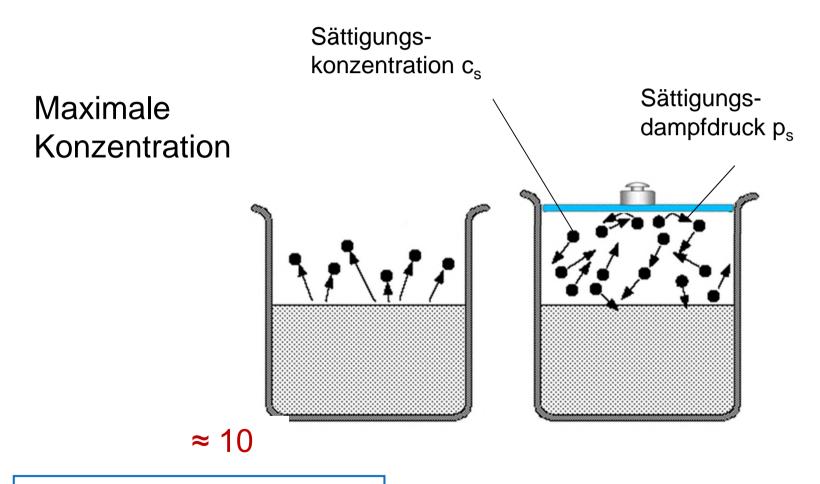
ZIEL: Arbeitnehmer-DNEL

Risikobewertung

$$RCR = \left(\frac{Exposition}{DNEL}\right) + \left(\frac{Exposition}{DNEL}\right)$$
komb.
derma

Berechnungen / Abschätzungen

• Einfache Berechnungen


Modelle

EMGK-Expo-Tool

ECETOC TRA

Sättigungsdampfdruck / -konzentration

$$C_s(ml/m^3) = 9.87 \cdot p_s(Pa)$$

Massenbilanz ohne Lüftung

Annahme: vollständige Verdampfung, gleichmäßige Verteilung im Bilanzraum

$$c_i = \frac{m_i}{V_{Raum}}$$

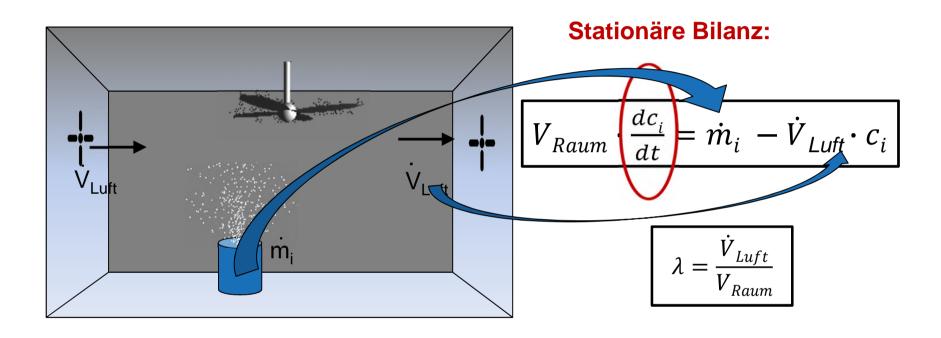
m_i = Masse des emittierten Stoffes [kg, mg],

 V_{Raum} = Volumen des Bilanzraums [m³]

c_i = Konzentration des Stoffes im Bilanzraum [kg/m³, mg/m³]

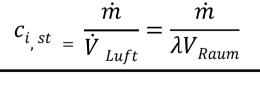
Beispiel

Eine Energiesparlampe mit 2,5 mg Quecksilber zerbricht in einem geschlossenen Raum mit einer Grundfläche von 2,5 m x 4 m und einer Deckenhöhe von 2,7 m. Welche maximale Quecksilberkonzentration kann sich einstellen, wenn sich das Quecksilber gleichmäßig in der Raumluft verteilt?


AGW von Hg liegt bei 0,02 mg/m³

$$c_{Hg} = \frac{m_{Hg}}{V_{Raum}} = \frac{2.5}{2.5 \cdot 4 \cdot 2.7} = \mathbf{0.093} \frac{mg}{m^3}$$

Durchmischter und belüfteter Bilanzraum


m_i = Massenstrom des emittierten Stoffes [kg/h, mg/h]

V_{Luft} = Volumenstrom an Frischluft [m³/h]

V_{Raum} = Volumen des Bilanzraums [m³]

c_{i,st} = stationäre Konzentration des Stoffes im Bilanzraum [kg/m³, mg/m³]

λ = Luftwechselzahl [1/h]

Beispiel:

In einem Labor befindet sich ein Reinigungsbad, das bei Arbeitsbeginn aufgedeckt wird und täglich (8 h) mit 500 ml Isopropanol (Dichte 0,78 g/ml, AGW 500 mg/m³) aufgefüllt werden muss, um die verdunstete Menge auszugleichen. Welche stationäre Luftkonzentration stellt sich in dem Raum (80 m³) ein, in dem ein Luftwechsel von 1,

 $m_{iso} = 500000 \times 0.78 = 390000 \text{ mg}$

$$\dot{m}_{iso}$$
= 390000/8 = 48750 mg/h

$$V_{Luft} = 1 \times 80 = 80 \text{ m}^3/\text{h}$$

2, 10) Raumvolumen pro Stunde herrscht?
$$m_{iso} = 500000 \times 0.78 = 390000 \text{ mg}$$

$$m_{iso} = 390000/8 = 48750 \text{ mg/h}$$

$$m_{iso} = 1 \times 80 = 80 \text{ m}^3/\text{h}$$

$$m_{iso} = 1 \times 80 = 80 \text{ m}^3/\text{h}$$

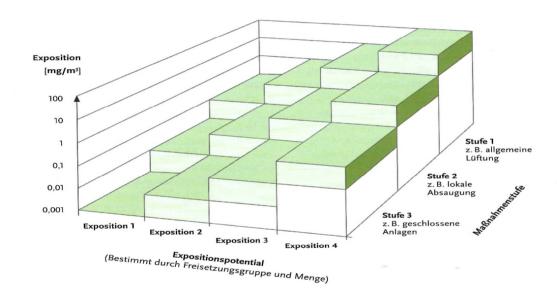
$$c_{i,st} = \frac{\dot{m_i}}{\dot{V}_{Luft}} = \frac{\dot{m_i}}{\lambda V_{Raum}} = \frac{48750 \frac{mg}{h}}{80 \frac{m^3}{h}} = 609 \frac{mg}{m^3}$$

Berechnungen / Abschätzungen

Einfache Berechnungen

- Modelle
- > EMGK-Expo-Tool

ECETOC TRA



EMKG-EXPO-Tool

- Basiert auf britischen COSSH Essentials, Zuordnung von Expositionsdaten zu Expositionsbändern
- Abschätzung der inhalativen Exposition
- Schutzleitfäden: Konkretisierung der Arbeitsplatzsituation

Download:

Expositionsbänder für Stäube

3 Eingabeparameter:

- Flüchtigkeit
- Menge
- Schutzmaßnahmen

https://www.baua.de/DE/Themen/Arbeitsgestaltung-im-Betrieb/Gefahrstoffe/REACH-Bewertungsstelle-Arbeitsschutz/EMKG-Expo-Tool.html

Vorgehensweise

Freisetzungsgruppe + Menge

S:

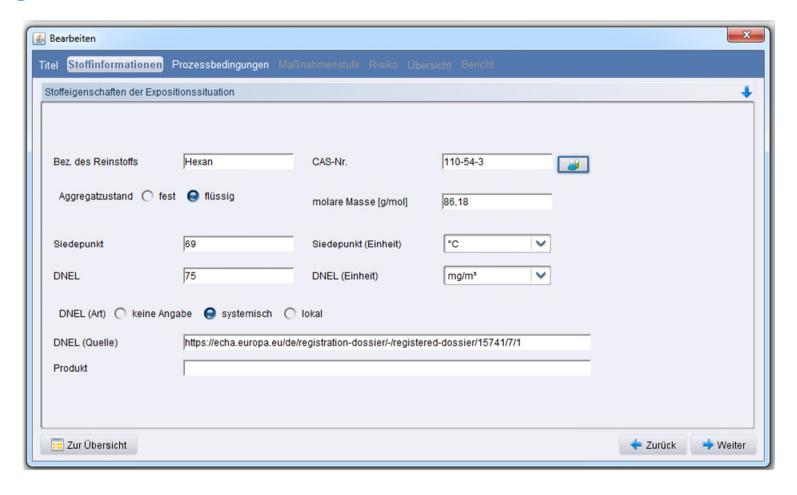
I: Dampfdruck

Expositions potential

Expositions- potential Feststoff		Freisetzungsgruppe			
		Gering	Mittel	Hoch	
e.	Gering	1	1	2	
Menge	Mittel	2	3	3	
2	Hoch	2	4	4	

Expositionshöhe

		Expositionspotentialband			
		1	2	3	4
Maßnahmenstufe	1	0,01 - 0,1	0,1 – 1	1 – 10	> 10
		< 5	5 – 50	50 – 500	> 500
	2	0,001 – 0,01	0,01 - 0,1	0,1 – 1	1 – 10
		< 0,5	0,5 – 5	5 – 50	5 – 500
	3	< 0,001	0,001 – 0,01	0,01 – 0,1	0,1 – 1
	3	< 0,05	0,05 - 0,5	0,5 – 5	0,5 - 5


EMKG-EXPO Tool

- 9 Schritte:
- 1. Eingabe der Stoffeigenschaften
- 2. Auswahl der Freisetzungsgruppe
- 3. Auswahl der Mengengruppe
- 4. Anwendungsdetails
- 5. Ermittlung des Expositionspotentials
- 6. Auswahl der Maßnahmenstufe
- 7. Ermittlung der Expositionshöhe
- 8. Ermittlung des Risikos
- 9. Berichterstellung

1. Eingabe der Stoffeigenschaften

Eingabemaske

2. Auswahl der Freisetzungsgruppe: Feststoff

Feststoffe



Freisetzungs- gruppe	Beschreibung des Feststoffes		
Gering	Granulare, nicht bröselnde Feststoffe, z.B. PVC-Pellets, Wachse Während der Verwendung werden nur geringe Mengen Staub beobachtet.		
Mittel	Kristalline, gekörnte Feststoffe, z.B. Seifenpulver, Zucker Während der Verwendung wird Staub beobachtet, der sich aber schnell absetzt.		
Hoch	Feine, leichte Pulver, z.B. Zement, Titandioxid Während der Verwendung entstehen Staubwolken, die sich erst nach mehreren Minuten absetzen.		

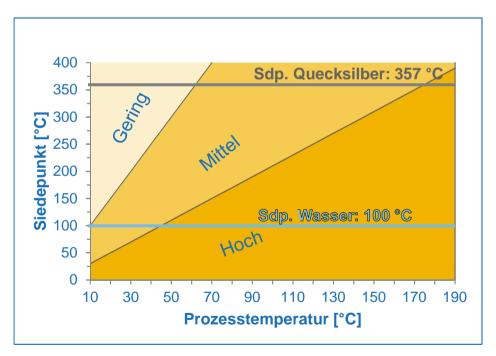
2. Auswahl der Freisetzungsgruppe: Feststoff

2. Auswahl der Freisetzungsgruppe: Flüssigkeit

Dampfdruck bei Prozesstemperatur bekannt

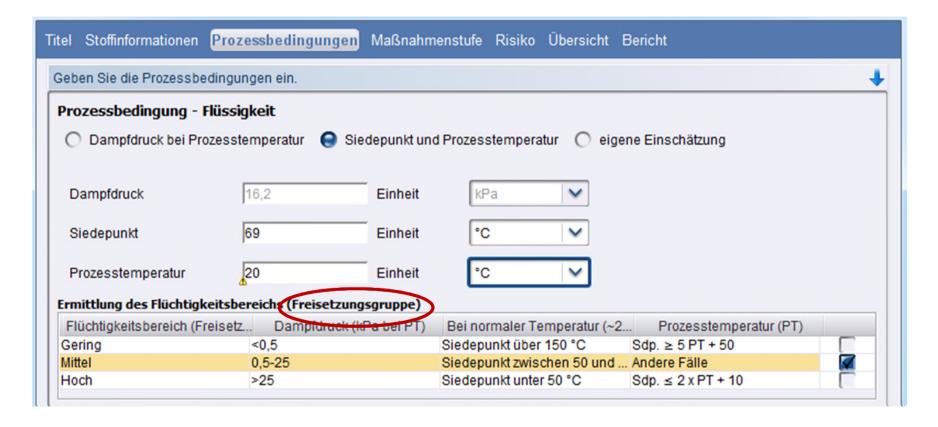
Freisetzungs- gruppe	Dampfdruck bei Prozesstemperatur
Gering	< 0,5 kPa
Mittel	0,5 – 25 kPa
Hoch	> 25 kPa

Wasser					
Prozess- temperatur	Dampf- druck	Freisetzungs- gruppe			
0 °C	0,61 kPa	Mittel			
25 °C	3,17 kPa	Mittel			
70 °C	31,1 kPa	Hoch			


Quecksilber				
Prozess- Dampf- temperatur druck		Freisetzungs- gruppe		
130 °C	0,16 kPa	Gering		
200 °C	2,3 kPa	Mittel		
290 °C	26,3 kPa	Hoch		

2. Auswahl der Freisetzungsgruppe: Flüssigkeit

Dampfdruck bei Prozesstemperatur nicht bekannt:


Siedepunkt & Prozesstemperatur notwendig

Prozess- temperatur	Dampf- druck	Freisetzungs- gruppe			
	Wasser				
0 °C	0,61 kPa	Mittel			
25 °C	3,17 kPa	Mittel			
70 °C	31,1 kPa	Hoch			
Quecksilber					
130 °C	0,16 kPa	Gering			
200 °C	2,28 kPa	Mittel			
290 °C	26,3 kPa	Hoch			

2. Auswahl der Freisetzungsgruppe: Flüssigkeit

✓ 1. Eingabeparameter

3. Auswahl der Mengengruppe

Feststoffe

Gering mL bzw. g

Mittel
L bzw. kg

Hoch m³ bzw. t

Stoff im Gemisch: Nur die Menge des Stoffes im Gemisch betrachten!

3. Auswahl der Mengengruppe

Feststoff

Flüssigkeit

✓ 2. Eingabeparameter

4. Anwendungsdetails

Expositionsdauer

Normalfall: Schichtlänge 8 h

<u>Ausnahme:</u> besonders kurze Expositionsdauern(< 15 min)

→ geringere Expositionshöhen

Applikationsfläche (nur für Flüssigkeiten)

Normalfall: Es wird von Flächen < 1 m² ausgegangen

Ausnahme: besonders große Applikationsflächen (> 1 m²)

→ ein Band höher beim Expositionspotential

5. Ermittlung des Expositionspotentials

Kombination aus Freisetzungsgruppe & Menge

Expositions potential

Expositions-		Freis	etzungsgr	uppe
potential Flüssigkeit Fläche < 1m²		Gering	Mittel	Hoch
e e	Gering	1	2	2
Menge	Mittel	2	3	3
 2	Hoch	2	3	4

Expositions-		Freis	etzungsgr	uppe
potential Feststoff		Gering	Mittel	Hoch
و	Gering	1	1	2
Mittel		2	3	3
≥	Hoch	2	4	4

5. Ermittlung des Expositionspotentials / großflächige

Kombination aus Freisetzungsgruppe & Menge

Expositions potential

Expositions-		Freisetzungsgruppe			
potential Flüssigkeit Fläche < 1m²		Gering Mittel		Hoch	
e e	Gering	1	2	2	
Mittel		2	3	3	
≥	Hoch	2	3	4	

	Expositions-		Freis	etzungsgr	uppe
F	potential Flüssigkeit Fläche > 1m²		Gering	Mittel	Hoch
	و Gering		2	3	3
	Menge	Mittel	3	4	4
'	2	Hoch	3	4	4

Sonderfall für Flüssigkeiten: Applikationsfläche > 1 m²

Ermitteltes Expositionspotentialband + 1

6. Auswahl der Maßnahmenstufe

STUFE 1: MINDESTANFORDERUNGEN

Gute generelle Belüftung & gute Arbeitsweise

STUFE 2: TECHNISCHE MAßNAHMEN

Örtliche Absaugung, z. B.
Punktabsaugung nahe der Quelle,
partielle Einhausung & gute
Arbeitsweise

√ 3. Eingabeparameter

STUFE 3: GESCHLOSSENES SYSTEM

Einhausung oder Eindämmung & gute Arbeitsweise

Höchste Expositionsminderung

staltung des Arbeitsverfahrens

- Der Zuert zum Arbeitsbereich ist nur für Befuge zu erfauben.
 Das geschlossene System so planen, dass au leichl gevortet und nst gefunen werden kann.
- Vom Handalie alle Informationen baschaffen, die für das siche des geschliesserien Systems effordens inzil (Vomformitälserfi Kampsechung, Bedomungszeistung, Gefährenhimmens des Kampsechung, Bedomungszeistung, Gefährenhimmens des Systems wenn möglich, unter Unterspick Kallen, samt die Frei
- Für Proberahmen möjlichtel eins soorsanne Systeme installieren. F
 kurzsviliges Offen des geschlossenen Systeme ertrotenion or, lok
 Adulagung einsehen.
- ingscheckliste für Beschäft

 McG-000 gekenroeintnete Soffe unar Verschl
 lagen, das de akke Absagung ve Al
 - + Dick verschlaßbare Gefahrsoftwillter verwenden.

 Alle Leitungen Burz und einfach gestaben. Längere Absohnibe mit 1
 - Alle Leikingen kurz und einflich gestaben. Längere Absohnibe mit Beköllen Leibingen vermeisen.
 Abhit weg von Türen, Ferichen und anderen Ertilissen leiben.

Instrument to the second of the second

- Obergrüfung der innlagenspacifischen Parameter und Vergleich mit ihnen Leistungsstandanlis nach Herstellervorg.
- + Alle Prühadriweise mindestens bis zur nächsten Prüfung außereichten.
- + Ablagerungen und Verunneinigungen in Lüftungsanlagen sofurt besertige
- Alle besonderen Matinahmen, die erforderlich sind, ehe das Dystem geöffnet oder betreien werden kann, Ausspülen oder Reinigen, sind schriftlich festsalegen.

Handlungscheckliste für Beschäftigte

- Scheduler, dass Liftungsunlager vor Arbeitsbegrin eingeschaltet sind und funktionieren.
- Sicherstellen, dazs die lokale Absougung vor Arbeitsbeginn emgeschaftet at und funktioniert. Date Messinstrumente (z. B. die Volumenstrummessung) beachten.
- Märgel sofot dem Vorgesetzten nichelen, im Zwelfelsfall nicht weiterarbeiten!
- Yor den Öffnen des geschlossenen Systems, ein "eriten meltisti stalemen" und einen Ertaubnisischen vorlege
- Note in urge Raume soer Behälter einsteigen, wenn sie nicht vorter auf Gefahnsiche und Sauerstoftgehalt überprüt
- Priden, so Adult vor dem Ablassen genengt werden muse.

7. Ermittlung der Expositionshöhe

Expositionshöhe

		Expositionspotentialband				
		1	2	3	4	
9	1	0,01 - 0,1	0,1 – 1	1 – 10	> 10	
stuí		< 5	5 – 50	50 – 500	> 500	
nen	2	0,001 – 0,01	0,01 – 0,1	0,1 – 1	1 – 10	
ahr	2	< 0,5	0,5 - 5	5 – 50	5 – 500	
Maßnahmenstufe	2	< 0,001	0,001 – 0,01	0,01 – 0,1	0,1 – 1	
Σ	Ž 3	< 0,05	0,05 - 0,5	0,5 – 5	0.5 Refe	

ferenzwertes, aber als kritisch zu betrachten Flüssigkeiten

Expositions wert unternal

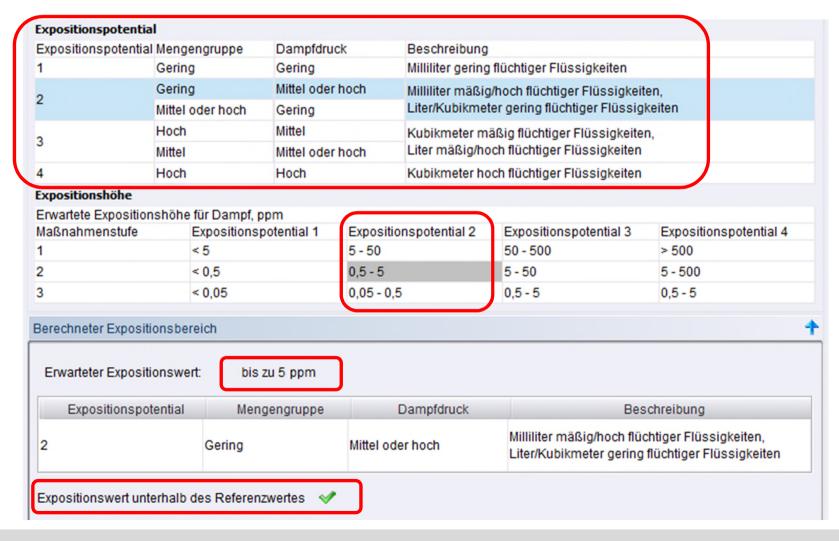
7. Ermittlung der Expositionshöhe – verkürzte Exposition

Expositionsdauer < 15 min

Expositionshöhe

		Expositionspotentialband				
		1 2		3	4	
a	1	0,001 – 0,01	0,01 – 0,1		0,1 – 1	1 – 10
nstufe	_	< 0,5	0,5 – 5		5 – 50	5 – 500
nen	2	< 0,001	0,001 -	0,01	0,01 – 0,1	0,1 – 1
nahr	۷	< 0,05	0,05 -	0,5	0,5 – 5	0,5 – 50
Maßnahme	2	< 0,001	< 0,0	01	0,001 – 0,01	0,01 – 0,1
_	3	< 0,05	< 0,0)5	0,05 – 0,5	0,05 – 0,5

Feststoffe [mg/m³]


Flüssigkeiten [ppm]

Sonderfall: besonders kurze Expositionszeiten (< 15 min)

→ Tabelle mit geringeren Expositionshöhen

7. Ermittlung der Expositionshöhe

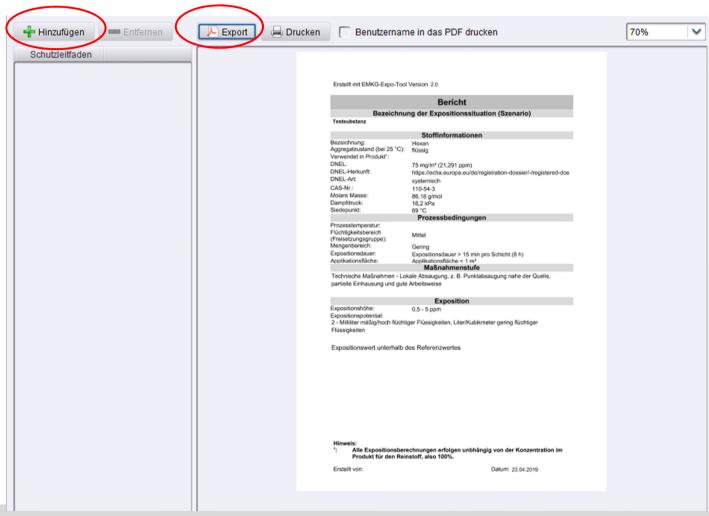
8. Abschätzung des Risikos

Vergleich der oberen Grenze des Expositionsbandes mit DNEL oder anderen Referenzwerten (AGW, OELV, BOELV, ...)

- Risikoverhältnis (RCR) < 1
 - Risiken beherrscht

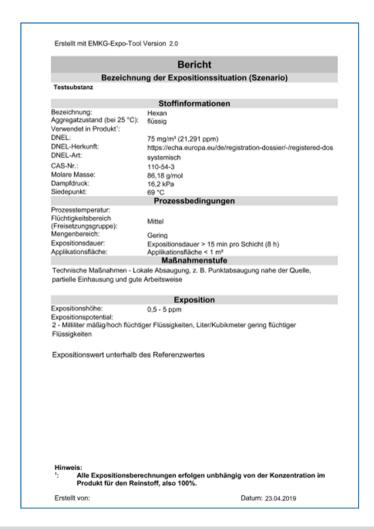
Expositionswert unterhalb des Referenzwertes 💚

Verwendung im Risiko



- → Höhere Maßnahmenstufe
- → Abschätzung höherer Stufe (Tier 2)

9. Erzeugung des Berichtes


Dokumentation

Schritt 9 von 9: Erzeugung des Berichtes

- Zusammenfassung der wesentlichen
 Eingaben und des Resultates
- Erweiterbar um die verwendeten
 Schutzleitfäden
- Verwendbar im Rahmen des
 Expositionsszenariums nach Artikel 14
 der REACH-Verordnung

Beispiel zur Verdeutlichung

Umfüllen von Hexan

Hexan: flüssig, Sdp.: 69 °C

Freisetzungsgruppe: Mittel

Prozesstemperatur: 25 °C

Menge: 50 Liter Mengengruppe: Mittel

Fläche: < 1 m²

Dauer: > 15 min

→ Expositionspotential: 3

Maßnahmenstufe: 2

Maßnahmen: Absaugung aber

keine geschlossene Anlage

geschlossene Amage

→ Expositionsbereich: 5-(50) pm

DNEL: 75 mg/m³ \triangleq 21 ppm

$$RCR = \frac{Exposition}{DNEL} = \frac{50 \text{ ppm}}{21 \text{ ppm}} = 2,38$$

Zusammenfassung

- Abschätzung der inhalativen Exposition gegenüber Stoffen und Stoffen in Gemischen (wie für reinen Stoff)
- Einfaches Tier 1 Modell mit nur 3 Eingabeparametern
- Verwendung von Schutzleitfäden als Auswahlhilfe
- Kombination des Ergebnisses mit Informationen aus den Schutzleitfäden

Grenzen des Modells

- CMR-Stoffe
- Stäube, die durch Abrieb entstehen
- offene Sprühanwendungen
- Umgang mit Gasen oder Pestiziden
- Anwendungen, bei denen Holzstaub oder Rauch entsteht

Berechnungen / Abschätzungen

Einfache Berechnungen

Modelle

EMGK-Expo-Tool

ECETOC TRA

ECETOC - TRA

Targeted Risk Assessment (TRA) worker Modell (v 3.1)

> Grundsätzliches, Algorithmus

Modifikatoren

Einschätzung

Beispiel

ECETOC TRA(M)

- Vollständige Überarbeitung der 2. Version (2006)
 -> vom TRA zum REACH Tool, TRA ist ein Modell für Tier 1 (wenige Eingabeparameter)
- Integriertes Tool umfasst drei Expositions-Modelle für Arbeitnehmer, Verbraucher und Umwelt

- Excel® basierte Anwendung
- Aktuelle Version TRA v. 3.1 (2014) bzw. integriertes Tool TRAM www.ecetoc.org/tra / www.easytra.de
- Tabellen: https://www.ecetoc.org/targeted-risk-assessment-tra/

ECETOC TRA(M)

- Grundlage historische Messdaten aus UK (basierend auf dem EASE Modell)
- Weiterentwickelt von Expertenteam, neueren Messdaten, Arbeiten zu Lüftungssystemen, Änderungen der Struktur, Anpassen an REACh-Vorgaben, Validierungen
- Inhalative und dermale Exposition

Eingabe

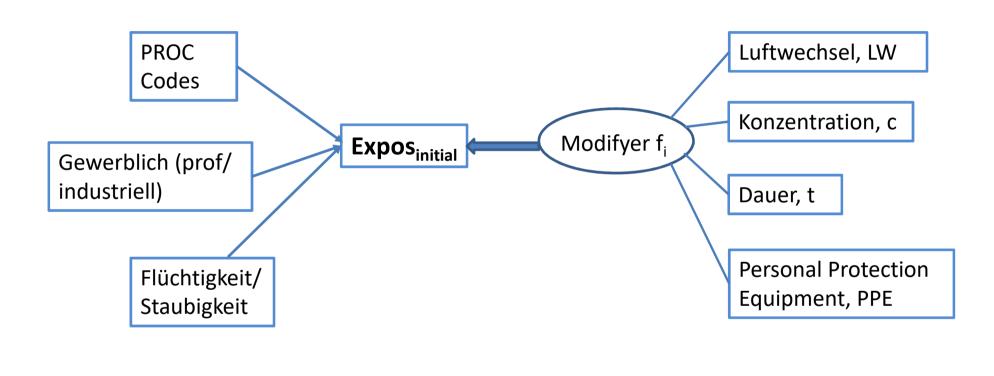
Stoffdaten:

Molmasse, Flüchtigkeit (Dampfdruck/Staubigkeit)

• Verwendungsweise:

PROC (REACH-Deskriptor), Sektor (industriell/gewerblich),

Lüftung,


Dauer,

Konzentration in Gemischen, Risikominderungsmaßnahmen (LEV, PPE)

• Referenzwerte (z. B. DNELs, optional)

Aufbau, Algorithmus

 $E = E_{ini} \cdot f_{LW} \cdot f_c \cdot f_t \cdot f_{PPE}$

ECETOC - TRA

Targeted Risk Assessment (TRA) worker Modell (v 3.1)

Grundsätzliches, Algorithmus

Modifikatoren

Einschätzung

Beispiel

Modifikatoren: Flüchtigkeit / Staubigkeit

Flüssigkeiten

Vapour pressure (kpa)	Fugacity
< 0.00001	Negligible*
≤ 0,00001- < 0,5	Low
0,5 - 10	medium
> 19	high

^{*&}lt; saturation concentration

Feststoffe

Dustiness	Typical
Not dusty	Granules, pellets
slightly dusty	Sugar, salt
dusty	Talc, graphite
Very/extremely dusty	Cement dust, milled powder, process fumes

Modifikator: Lüftung (LW)

Art der Lüftung	Beschreibung	Ventilation Effektivität
Basic general Ventilation	Grundlegende natürliche Lüftung (normale Lüftung an einem Arbeitsplatz) Luftwechsel: 1 – 3	0%
"Good" general Ventilation	Gute natürliche Lüftung (gelegentlich offene Türen / Fenster, mechanische Lüftung) Arbeitsplatz "outdoor"* Luftwechsel 3 – 5	30 %
Enhanced general ventilation / LEV	Technische Lüftung Luftwechsel 5 – 10 Nicht in Kombination mit "use outdoor"* 90 % effektive LEV nicht für professionelle Anwendungen	prof: 80% ind: 90% PROC 7, 8b: bis 95%
* Outdoor darf/kann nic		

Modifikatoren: Konzentration (c), Dauer (t)

Konzentration

Concentration in mixture (w/w)	Exposure modifying factor
Pure substance	1
> 25 %	1
5 – 25 %	0,6
1 – 5 %	0,2
< 1 %	0,1

Dauer

Duration of activity	Exposure modifying factor
> 4 hours (default)	1
1 – 4 hours	0,6
15 mins to 1 hour	0,2
r 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	, BAuA 0,1

Modifikator: Atemschutz (RPE)

RPE Respiratory Protective Equipment (EN 140)	AFP Actual Protection Factor	Exposure modifying factor
Respiratory protection is not used	n/a	1
Respiratory Protection offering a 90% reduction in inhaled concentration of the substance	10	0,1
Respiratory protection capable offering a 95% reduction in inhaled concentrations of the substance	20	0,05

Unbedingt: (S)TOP-Prinzip beachten! Persönliche Schutzmaßnahmen nur als letzte Möglichkeit wählen!

Modifikatoren bei der dermalen Exposition

Berücksichtigung von Schutzhandschuhen

(getestet gemäß EN 374)

Ind	ustrial use	Professional use			
Gloves	modifying factor	Gloves	modifying factor		
No	1	No	1		
APF 5	0,2 (80%)	APF 5	0,2		
AFP 10	0,1 (90%)	AFP 10	0,1		
AFP 20**	0,05 (95%)	AFP 20	0,1*		

^{*} factor < 0,1 nicht für professional use

^{**}Hohe Schutzfaktoren (95%) werden nur bei ausreichendem (basic, specific) Training der Belegschaft erreicht.

Übersicht: Expositionshöhen (inhalativ)

PROC	ES	Fugacity	LEV	E _{ini} s: mg/m³	E _{ind} s: mg/m³	E _{prof} s: mg/m³	Effectiver	ness LEV	
TROC		ragacity	•	l: ppm	l: ppm	l: ppm	professional	industrial	
solids	solids								
10	Roller application, brushing	High					90	80	
			No	10	10	10			
		Moderate					90	80	
			No	5	5	5			
		Low					90	80	
			No	0,5	0,5	0,5			
volatiles				-					
10	Roller application, brushing	High					90	80	
			No	500	250	500			
		Moderate					90	80	
			No	100	50	100			
		Low					90	80	
			no	100	10	25			

Inhalative Expositionshöhen

PROC	Exposure scenario	LEV	Fugacity	TR93 exposure prediction	Industrial exposure prediction (1)	Professional exposure prediction (1)	EASE LEV Effectiveness Industrial (%) (2)	EASE LEV Effectiveness Professional (%) (2)
10	Roller application or brushing	yes	High	1			90	80 (9)
	(solids)	no		10	10	10		
	mg/m3	yes	Moderate	0,5			90	80 (9)
		no	Moderate	5	5	5		
		yes	Low	0,1			90	80
		no	LOW	0,5	0,5	0,5		
	(volatiles)	yes	High	100			90	80
	ppm	no		500	250	500		
		yes	Moderate	20			90	80
		no		100	50	100		
		yes	Low	10			90	80
		no		100	10	25		
11	Non-industrial spraying	yes	High	10			n/a	80 (9)
	(solids)	no	111911	200	n/a	200	11/4	00 (-)
	mg/m3	yes		1	Th'a	200	n/a	80
		no	Moderate	20	n/a	20		
		yes		0,1			n/a	80
		no	Low	1	n/a	1		
	(volatiles)	yes	High	100			n/a	80
	ppm	no	riigii	1000	n/a	1000		
		yes	Moderate	50			n/a	80
		no	Moderate	500	n/a	500		
		yes	Low	20			n/a	80
		no	LOW	100	n/a	100		

Farbige Ziffern: Abweichungen zu EASE-Daten

Dermale Expositionshöhen

professional		LEV present?	Assigned inhalation LEV efficiency (%)	Initial predicted v3 dermal exposure (ug/cm²/day)	Exposed skin surface (cm²)	Predicted dermal exposure (mg/kg/day)
PROC	Wide Dispersive Uses					
1	Use in closed process, no likelihood of	Yes	0	10		0.03
	exposure		0	10	240	0.03
2	Use in closed, continuous process with occasional	Yes	80	40		0.27
	controlled exposure	No	0	200	480	1.37
3	Use in closed batch process (synthesis or	Yes	80	40		0.14
	formulation)		0	200	240	0.69
4	other process (synthesis) where		80	200		1.37
	opportunity for exposure arises	No	0	1000	480	6.86

TRA(M) Ausgabe

- Inhalative Exposition in mg/m³ entsprechend dem Ausgangs-Expositionsband (PROC und Flüchtigkeit) und Modifikatoren (ggf. Umrechnung von ppm in mg/m³)
- Dermale Exposition in mg/kg/day (Langzeit) (lokal µg/cm²)
- RCRs (optional)

Einschätzung: Vorteile

- Das! Expositionsabschätzungs-Tool in REACH: PROCs als Eingangsparameter implementiert
 > 80% der bisherigen CSAs mit TRA erstellt
- vereinfachte Eingabe für bis zu 15 Szenarien pro Stoff
 (v.3)
 erweiterte Eingabe: bis zu 20 "datasheets", mit bis zu 80
 Stoffen mit je bis zu 60 Verwendungen
- Schnittstelle zu CHESAR (CHEmical Safety Assessment and Reporting tool)

Einschätzung: Grenzen

- Nicht anwendbar für:
 - Gase
 - Aerosolnebel
 - Prozessdämpfe
 - gelöste Feststoffe in flüssigen Gemischen
 - Fasern
- Einige PROCs nicht abgedeckt (26, 27a, 27b)
- Für CMR-Stoffe nur eingeschränkt geeignet

Beispiel: Blockschaumanlage

- PROC-Eingabe ist kritisch:
 Hinreichend konservative Abschätzungen nur bei vorsichtigen Annahmen
- Beispiel: kontinuierlicher Betrieb einer Blockschaumanlage

Auswahl der geeignetsten PROC

PROC 2

Verwendung in geschlossenem, kontinuierlichem Verfahren mit gelegentlicher kontrollierter Exposition

Kontinuierliches Verfahren, bei dem jedoch die Gestaltungsphilosophie nicht gezielt auf die Minimierung von Emissionen ausgerichtet ist. Es ist nicht hochintegriert und eine gelegentliche Exposition erfolgt z. B. durch Wartung, Probenahme und Bruch von Ausrüstungen.

PROC 12

Verwendung von Blähmitteln bei der Herstellung von Schaumstoff

Validierungsstudie

Kupczewska-Dobecka, M., et al. (2012). Environ Toxicol Pharmacol 34(2): 512-518.

- Vergleich von Arbeitsplatzmessungen und ECETOC TRA Abschätzungen (TDI + MDI) während der Blockschaum-Herstellung
- Ergebnis:

hinreichend konservative Schätzungen für **PROC 12** ✓ - TRA 3-fach über dem P90% der Messwerte

PROC 2 ★ - teilweise Unterschätzung für TDI

Zusammenfassung

- ECETOC TRA ist das meist verwendete Tool zur Expositionsabschätzung unter REACH
- Tier 1: es soll unkompliziert eine konservative Expositionsund Risikoabschätzung liefern
- PROC Eingabe ist kritisch: falsche Annahmen können zu Unterschätzungen führen
- (S)TOP beachten!
- Wirksamkeit von LEV ist häufig überschätzt

:helpdesk

https://www.baua.de/DE/Angebote/Publikationen/Brakis/REAGHIdn/pfp/REACH-Info-11.pdf?__blob=publicationFile

Beispiel: Benzylalkohol bei Bodenbeschichtung

- Anwendung: gewerbliche Verwendung von Benzylalkohol als Lösemittelbestandteil in Bodenbeschichtungsmitteln
- Stoffeigenschaften:

H332: Gesundheitsschädlich beim Einatmen

H302: Gesundheitsschädlich beim Verschlucken

- PC-Eigenschaften: fl, Dampfdruck 2,7 Pa (0,0027 kPa)
- DNELs:

Langzeit: inhalativ: 90 mg/m³, dermal: 9,5 mg/kg bw/day

Kurzzeit: inhalativ: 450 mg/m³, dermal: 47 mg/kg bw/day

Entwicklung von Expositionsszenarien

- Beschreibung: Verwendungsbedingungen Verfahren, Aggregatzustand, Tätigkeiten, Dauer und Häufigkeit der Exposition gegenüber dem Stoff
- Risikomanagementverfahren zu Verringerung oder Vermeidung von Expositionen, (S)TOP beachten!!
- Übersetzen in REACh Deskriptorensystem, für Arbeitsplatz wichtig: PROC, nachgeordnet: SU – Sector of Use, PC – Product Category

Übersetzung in Deskriptoren

- SU 19: Bauwirtschaft, kann in Innenräumen oder draußen stattfinden
- Anwendung, Produkte mit 5 15 % Benzylalkohol

Anmischen am Arbeitsplatz, Zugabe weiterer Stoffe, Vermischen mit

Handrührgerät (PROC 5), > 4 h

Nicht-industrielles Sprühen (PROC 11), > 4h

Rollen, streichen (PROC 10), > 4h

Vorbereitung, Konzentrat > 15 % Benzylalkohol

PROC 8a, Transfer in nicht eigens für das Produkt gestalteter Anlage, <1h

Weitere Randbedingungen, Umgebungstemperatur

Arbeitskleidung bedeckt den ganzen Körper

Augenschutz, Geeignete Chemikalienschutzhandschuhe

Sprühanwendung: RPE (Halbmaske mit geeignete Filterkartusche)

Regelmäßiges Wechseln der PPE? Absaugung?

Abschätzung der inhalativen Exposition

Flüchtigkeit: low

PROC	Verwendungsbedin- gungen, Modifikator			
8a	Gewerblich (prof.) - ohne LEV - < 1h - ohne PPE - > 25% Exposition	25 ppm - 0,6 - - 15 ppm (67,5 mg/m³)	0,75	
5	Gewerblich (prof.) - ohne LEV - > 4 h - ohne PPE - 5 - 25% Exposition	10 ppm 0,6 6 ppm (27 mg/m³)	0,3	
10	Gewerblich (prof.) - ohne LEV - > 4 h - ohne PPE - 5 - 25% Exposition	25 ppm - - - 0,6 15 ppm (67,5 mg/m³)	0,75	
11	Gewerblich (prof.) - ohne LEV - > 4 h - PPE 90 % wirksam - 5 - 25% Exposition	100 - - 0,1 0,6 6 ppm (27 mg/m³)	0,3	

Abschätzung der dermalen Exposition

PROC	E _{ini} (RCR)	Iteration	RCR	
		PPE	Exposition (RCR)	combined*
8a gewerblich (prof.)	13,71 mg/kg/day (RCR: 1,44)	Schutzhandschuhe: 80 % wirksam	2,74 mg/kg/day RCR: 0,29	1,04**
		Iteration: Schutzhandschuhe: 90% wirksam	1,371 mg/kg/day RCR: 0,14	0,89
5 gewerblich (prof.)	13,71 mg/kg/day (RCR: 1,44)	Schutzhandschuhe: 80 % wirksam	1,64 mg/kg/day RCR: 0,17	0,47
10 gewerblich (prof.)	27,43 mg/kg/day (RCR: 2,89)	Schutzhandschuhe: 80 % wirksam	3,291 mg/kg/day RCR: 0,346	1,096**
		Iteration: Schutzhandschuhe: 90% wirksam	1,64 mg/kg/day RCR: 0,173	0,92
11 gewerblich (prof.)	107,14 (RCR: 11,28)	Schutzhandschuhe: 80 % wirksam \triangleq 0,2 Konzentration: 0,6	12,85 mg/kg/day RCR: 1,35*	1,65**
		Iteration: Schutzhandschuhe: 90% wirksam	6,4 mg/kg/day RCR: 0,68	0,98

**Iteration: Mit effektiveren Handschuhen ist der RCR < 1, aber: werden im Baugewerbe Handschuhe "gut" getragen?

^{*}RCR_{combined}= RCR_{inh}+ RCR_{dermal}

Übung

Abschätzung der Exposition gegenüber einem Pigment bei industrieller Pulverlackbeschichtung

Expositionsszenario

Ein Pulverlack mit einem Pigmentanteil von 20% wird in der industriellen Oberflächenbehandlung von Metallteilen eingesetzt. Die Pigmentpartikel haben einen mittleren Durchmesser $D_{50} = 1,1 \mu m$.

Die Beschichtungsarbeiten werden über eine volle Schichtlänge durchgeführt.

Hierzu wird zunächst das Trockenlackpulver mit einem Pigmentanteil von 35 % aus größeren Gebinden zusammen mit Zusatzstoffen in Behälter für Lackierpistolen umgefüllt. Diese befinden sich in Sprühkabinen, in denen eine lokale Absaugung vorhanden ist.

Anschließend wird der Pulverlack in den Kabinen auf Metallwerkstücke gesprüht.

Nach dem Lackieren werden die Werkstücke in Trockner gebracht und erhitzt, wobei der Lack für 10 Minuten bei 180°C durch Einbrennen vernetzt. Auch hier ist eine technische Abluftanlage installiert.

Bei allen Tätigkeiten mit möglichem Kontakt zu dem Pulverlack, ist das Tragen geeigneter Schutzhandschuhe vorgeschrieben. Ein spezielles Training für die Handhabung der Handschuhe ist nicht vorgesehen, sodass eine Schutzwirkung von 80% angenommen werden kann.

Aufgabenstellung

Aufgabenstellung

Schätzen Sie die inhalative sowie die dermale Exposition gegenüber dem Pigment mit dem ECETOC TRA Tool ab.

Bestimmen Sie hierzu zunächst, welche PROCs für das beschriebene Expositionsszenario einschlägig sind.

Verwenden Sie die tabellierten Expositions-Ausgangswerte für die weiteren Berechnungen, indem Sie die geeigneten Modifikations-Faktoren anwenden.

DNEL: 3,2mg/m³ (inhalativ)

DNEL: 5 mg/kg/day (dermal)

Zuordnungen

Angaben zum Stoff:

- 2) Konzentration des Stoffes in Ausgangsmischung: 30 %, Konzentration des Stoffes in der Zubereitung: 20%. Modifying factor 0 1, = 0,6

- 5) LEV für inhalative Exposition je nach tabellarischer Angabe
- 6) Verwendungskategorien: Industriell: PROC 7, 8A, 24
- 6a) Abfüllanlage speziell für das Produkt? PROC 8b mit 95%

Inhalaitve Exposition, Iteration

Inhalative Exposition industriell	Exposure prediction [mg/m³]	LEV	Predicted inhalative exposure [mg/m³]	Percentage of substance in preparation	Predicted inhalative exposure [mg/m³]	RCR _{inh}
PROC 7	100	95% ≙ 0,05	5	20%	3	0,94*
PROC 8A	50	90% ≙ 0,1	5		5	1,56**
Iteration:				30% ≙ 1		
PROC 8b	25	95% ≙ 0,05	1,25		1,25	0,39
PROC 24	10	80% ≙ 0,2	2	20%	1,2	0,06

^{*}hohe inhalative Exposition mit RCR ≈ 1. Da dermale Exposition auch noch berücksichtigt werden muss (s. folgende Seite) muss die Abschätzung mit Tier 2 Modell oder Messdaten spezifischer werden.

^{**}Iteration: Abfüllanlage ändern, Konzentration in der Ausgangsmischung reduzieren Iteration hier mit PROC 8b, (hier is LEV mit 95% Effektivität vorgesehen), sonst mit Tier 2 Modell oder Messdaten spezifischer werden.

Iteration: Dermale und kombinierte Exposition

Dermale Exposition* Industriell	E _{ini} [mg/kg/day]	Percentage of substance in preparation	Dermale Exposition [mg/kg/day]	Protection by golves	Dermal protection	RCR _{dermal}	RCR _{comb}
PROC 7	42,86	20% ≙ 0,6	25,72	80%	5,14 2,57	1,03 0,51	1,97** 1,45**
PROC 8A* PROC 8B*	13,71	30 ≙ 1	13,71	90%	1,286 2,74 1,371	0,257 0,55 0,274	1,19** 1,33 0,66
PROC 24	2,83	20% ≙ 0,6	1,7	80% = 0,2	0,34	0,068	0,128

^{*}Kein Unterschied bei dermaler Exposition, LEV bei dermaler Exposition umstritten

^{**} hohe inhalative Exopsition (RCR 0,94), hier muss Tier 2 Modell/Messdaten angewendet werden.

Dr. Susanne Bredendiek-Kämper, BAuA

Vielen Dank für Ihre Aufmerksamkeit!

Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

Fachgruppe 4: Expositionsszenarien

Dr. Susanne Bredendiek-Kämper

Friedrich-Henkel-Weg 1-25 44149 Dortmund Tel. 0231/9071-2961